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A Numerical Calculation of the Capacitance
for the Rectangular Coaxial Line with Offset

Inner Conductor Having an Anisotropic
Dielectric

HISASHI SHIBATA, SHINYA MINAKAWA, AND RYUITI TERAKADO

Abstract —The capacitances of the rectangular coaxiaf lines with an
offset zero-thickness inner conductor having a sapphire dielectric are
presented by using an expanded charge simulation method, In order to

apply the method to an anisotropic region, we propose an electric potential
formula for a two-dimensiormf system consisting of a line charge and an

infinite plate conductor which are arbitrarily situated in the region. The

potential formula is anatyticafly derived by means of an affine ‘transfonna-
tiors, a confonnaf mapping tecfudque, and the method of images. The
capacitance catcufated using this method is in good agreement with those of

other available methods.

I. INTRODUCTION

T HE RECTANGULAR coaxial line has been used

in microwave circuits and EMI measurement systems

[1]. The analysis of the structures with a zero-offset

inner conductor has been presented by Magnus and

Oberhettinger [2], Anderson [3], and Cohn [4]. Magnus and

Oberhettinger have also given in [2] the characteristic im-

pedance of the stripline with a circular outer conductor.

Chen [5] has obtained the capacitances of the rectangular

structures for the horizontally and vertically offset inner

conductor of finite thickness. Tippet and Chang [6] have

presented an interesting formula for the capacitance of the

structure with an offset zero-thickness strip by using a

singular-integral-equation technique. Riblet [7] has pre-

sented the even- and odd-mode characteristic impedances

of the rectangular coaxial structure with off-centered strips

by the Schwartz-Cristoffel transformation method. How-

ever, the medium between the outer and inner conductors

in the above literatures was composed of isotropic dielec-

tric:

The two-dimensional space between the two conductors

of the rectangular coaxial line, which is discussed in this

paper, is filled with an anisotropic medium. The cross

section of the structure is shown in Fig. 1. The zero-thick-

ness inner conductor is arbitrarily situated. The structure

with the anisotropic medium can be transformed to one

with a corresponding isotropic medium by means of a

transform method [8]–[10] or the method by normalized
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Fig. 1. Cross section of the rectangular coaxiaf line with offset inner
conductor having in anisotropic medium. (Point O‘ is the center of the
rectangular.)

metric factor [11]. By applying the transformation, which

has been reported by Kusase and Terakado [10] and was

used in [12] and [13] by Shibata et al., however, the shapes

of outer conductors in Fig. 1 are generally converted into

parallelograms. Therefore, the formulas in the literature

[2]-[7] cannot be applied to the analysis of the structure

shown in Fig. 1, except for the extreme cases, i.e., 8 = O

and r\2, and a numerical method is needed. The parame-

ter O is the angle between the principal axes of the aniso-

tropic medium and the x – y coordinates. There are various

numerical methods [14] which are applicable to the iso-

tropic region. However, it is advantageous if the method
can be directly applicable to the anisotropic region [15],

[16]. To obtain the capacitances accurately, however, these

methods are not always convenient, because the distributed

charges on the strip shown in Fig. 1 must be computed

with the potential values at a large number of grid points

of the neighborhood of the strip.

In the present work, a charge simulation method [17],

[18] is used to obtain the capacitance of the structure

shown in Fig. 1. This method has a high accuracy if we use

a good arrangement of the discrete charges, even though a

small number of charges are used. To apply the method to
the anisotropic region, we present the electrostatic field

generated by a line charge and an infinite plate conductor

which are located at any position in the region. An affine

transformation, a conformal mapping technique, and the
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method of images are used to obtain the potential function.

We also present exact distributions of equipotentials and

lines of electric flux in the region by using the function.

Application to the charge simulation method of the poten-

tial function, which already satisfied the boundary condi-

tion on the strip conductor, yields the decrease in the

number of charges by comparison with the conventional

method [17]. This consideration has been reported for an

isotropic region by Murashima [19]. The values of capaci-

tances for both f3 = O and 8 = m/2 of the structures with

offset and zero-offset strips shown in Fig. 1 are compared

with those calculated by authors using other available

methods [2], [6]. And so the capacitance obtained by the

method of this paper will be shown to have a satisfactory

accuracy.

The merit of this method is that it can be applied to the

striplines using the anisotropic medium with the outer

conductors of arbitrary shape. The application is exem-

plified with a circular outer conductor.

II. POTENTIAL FUNCTION IN ANISOTROPIC REGION

Now consider the two-dimensional region which is filled

with the anisotropic medium of the following permittivit y

tensor:

[

El,COS2d + c1 sin2 O (c,, – 6J ) sin f3cos 8
z(x, y)=co

(6,, -CL )sindcosd c1 Coszd +6,, sin26 1
(1)

for the x – y coordinates as shown in Fig. 2(a). Where (,,,

c1, and CO are the principal axes-relative dielectric con-

stants of the anisotropic medium and the permittivit y of

vacuum, respectively. We derive a potential function

$(x, y) at any point in the region including a plate con-

ductor with width 2w, and a line charge with magnitude A

per unit length. The function is a solution of Poisson’s

equation

v“{F(x, y) ’v@(.x, y)}= -~(xo>Yo) (2)

which satisfies the boundary condition on the plate con-

ductor, i.e., @=+0 ( = const). First, in order to obtain the

solution of (2) for the system shown in Fig. 2(a), we

transform the anisotropic region (Z-plane) in Fig. 2(a),

with the exception of the point of charge, into a corre-

sponding isotropic region (W-plane) as shown in Fig. 2(b)

by the following affine transformation [10], [12]:

[:1=[: :]”[;1

where

(3)

By applying (3), the permittivity of the isotropic region

becomes cOK. But the width of plate conductor is

invariant. Secondly, we transform the region in Fig. 2(b)

into the region (T-plane) shown in Fig. 2(c) by the follow-

. P(x,y) . P(u,v)
Z(x,y)

~A(xO, yO)
C-L

c.,
x x (Uo, vo)

/~+x +“
(a) Z-plane (b) w-plane

s

~A= W2/f?o I P/s)

-w

00

(c) T- plane

Fig. 2. Transformations to the isotropic regions from an rmisotropic

retion and armlication of the method of imaxes. (a) + (b): The affine
1.

transformation based on (3). (b) + (c): Conform~ ‘mapping based on

(4).

ing conformal mapping function [20]:

()W=; T+$ W=u+io T=r+is. (4)

By this mapping, the region exterior to the plate is trans-

formed into that exterior to the circle with radius w. Thus,

the method of images is used to obtain the solution to the

electrostatic problem involving a circular boundary. The

position of the image of a line charge inside the circular

conductor is a point A on a straight line which connects the

point (ro, so) to the origin O in the T-plane. The distance

OA is w 2/Ro. The magnitude of the image charge is – A.

Then, the potential @(r,s) at point P outside the circle is

given by a line charge of magnitude A at a point (ro, so)

and the image charge of magnitude – A at a point A as

A RORZ
+(r, s)= f+o+ ln~

27rco&
(5)

1

where R, and R* are the distances shown in Fig. 2(c).

Finally, we obtain the potential function @(x, y) at any

point P in the Z-plane by substituting (3) and (4) in (5).

That is

A
+(x, y)=+o+ ln~(x, y; xO, .YO) (6)

47i-60~

where

F(x, y;xo, yo)

= {f,(x!Y)-%fl(xo> Yo)}2+{f2(x,.Y- co.7-2(xo>Yo)}2

co[{f, (x, Y)–f, (xo!Yo)}2+ {f2(LY)-f2(~o> Yo)}21
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co= w2/4[{fl(xo> Yo)}2+{f2(~03 YO)}2] f,(x, y)= ‘+BY
l+g(x, y)

f2(x, y) = ay
l–g(x, y)

/’[’

(w+x+/3y)2+ a2y2+/(w-x-~y)2 +a2y2
g(x, y) = W2

2

~ I

2

(x+py)2+ a’y* - W*+ {w* +(x+ /?y)2+ a*y2}2–4w*(x +py)2

+
a

Equation (6) gives the potential in the region exterior to the

plate conductor. Of course, the potential on the conductor

is +.. The electric field at any point in the Z-plane is

derivable as the negative gradient of the potential (6).

Equation (6) is also applicable to an isotropic region if we

take Cl/cl, =1, i.e., a=l, ~ =0.
In Fig. 3, we show the distributions of equipotentials

and lines of electric flux in the region of Fig. 2(a) by using

(6). Fig. 3(a) and (b) shows the field distributions with the

parameters of c1 /cll = 1/9, 6 = m/6 (anisotropic), and c1 /

6,, = 1 (isotropic), respectively. To compare, the line charge

and the plate conductor are placed on the same positions

for both regions, respectively. Considerable differences of

the properties of electric fields for the two regions are

clearly presented in these figures. The curves in the Z-plane

correspond to the following circle groups:

{

2
w*ro(c–l)

r–
CW2– R; )

{

2

+ ~_ W%o(cyl)

Cw2 }–R;

_ Wfi(R&w2) 2—

{ CW2– R; 1
?

{

477fo&m – %)
c = exp

A }
for equipotential lines

(7)

{

,_ roc(R~+w2)-so(R~ -w2) 2

2cR~ }

(

+ s–
~o@t+w2)+’o(@-w2) 2

2cR; }

{

(R;-w2)4~ 2
.

2cR0
1

7

c = tan y for lines of electric flux

in the T-plane. Plotted in Fig. 3(a) and (b) are the curves

for the parameters with 4mo~(@ – @o)/A = 0.7m (m

=0,1, --- ,15) andy=+~/2n (n=l,2,. ..,5).

(a)

(b)

Fig, 3. Equipotentiak and lines of electric flux (w= 1, .xO= O, y. = 2).
(a) Anisotropic region (c ~ /6,, = 1/9, O== 7r/6). (b) Isotropic region
(~1 /{,, = l). ---------- Equipotential fines. — Lines of electric flux.

If we need the potential function at any point for a

conducting plate of width 2W charged with charge density

A per unit length, it can be readily obtained by using the

function g(x, y) in (6) as

A
q)(x, y)=r)o+ lng(x, y).

4Tco&
(8)

Equation (8) corresponds to the electric fields by an in-

finite line charge A on the origin in the T-plane. The



388 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. M’IT-31, NO. 5, MAY 1983

Fig. 4. Field distribution in anisotropic region (c ~ /6,, = 1/9, 8 = m/6)

by a conducting plate. ---------- Equipotentiaf lines. — Lines of
electric flux.

distributions of electric fields based on (8) are shown in

Fig. 4 &ith parameters c1 /cll = 1/9 and O = r/6. The

formula for the case of a = 1, /3 = O is given in [21].

III. APPLICATION TO CHARGE SIMULATION

METHOD

In this section, we show that the potential function (6)

can be applied to a charge simulation method [17], [18]. In

the method, the distributed surface charges on the outer

conductor are replaced by discrete fictitious line charges at

infinity. Those charges are arranged outside of the conduc-

tor, as shown in Fig. 5.

Now we assume that the number of pairs of line charges

and plate conductors is n. To determine the magnitude of

these charges, n contour points are chosen on the outer

conductor. By applying the superposition of the potential

function (6) at every contour point, the system of n linear

equations for n line charges is obt;

Am, & [lnF(xi, Yi; xj, Yj)]

o

as

+n[@O]=

4?1

\:

i.i

in
(9)

where +c~ (i=l,. . . . n) are the potential values on the

contour points. The pairs (xi, y;) and (xj, yj) are the

coordinates of contour and of charge points, respectively.

By solving the system of (9) under the boundary condi-

tion on the outer conductor, @ci = *CO ( = const), the

magnitudes of those charges [ Aj] are determined. So, the

potential at a point (x, y) between the inner and outer

conductors can be calculated analytically by superposition.

That is

@(x, y)=n@o+
1

~ AjhlF(x, y; Xj, ~).
4~~0~ j.1

(lo)

By using (10), we can check whether the calculated charges

are correct or not. The judgment is performed by compar-

ing the potential at a number of check points located on

the outer conductor with the given boumdary potential. Of

~lxxxx ;Jxxxx+k

Pc 1 Pc ~ PC k x ~k+f

Ann Pcn
*C i

Pck+l x

n~o
x

%x ~
x

x F(x,y)

Pcnl x km

‘L–,

,!

‘-{i-

Xq
Xxxx xxx XXXXM

o CONTOUR POINTS xLINE CHARGES

Fig. 5. Arrangement of line charges and contour points for the calcula-
tion of the field potentiaf between outer and inner conductors by charge
simulation method.

course the difference between those potentials must be

lessened. The capacitance Ca per unit length is obtained as

follows:

Ca = ~oo : ~co ,:, Xj . (11)

J

The accuracy of (11) depends not only on the placement

and the number of charges but also on the method of the

system of equations in (9). For these problems, Murashima

et al. [22], [23] discussed the properties of the potential

error and the location as well as shape of the boundary. No

discussion was presented, however, for a rectangular

boundary.

The capacitance error of the structure shown in Fig. 1

calctdatecl using (11) will be discussed in the following

section.

IV. NUMERICAL EVALUATION OF CAPACITANCE

We calculate in this section the capacitances of the

structure shown in Fig. 1 with a sapphire dielectric (q, =

11.6, c1 ==9.4) [24] by using the method presented in the

previous section. The arrangement of the line charges and

the contour points are shown in Fig. 5. In Fig. 5, we select

the locations for the line charges and the contour points as

follows.

a)

b)

c)

d)

e)

The number of line charges n is chosen to be 36.

The contour points are equally placed on each side

of rectangular.

The line charges are equally arranged on the straight

lines which parallel the sides of the rectangular. The

lengths of the straight lines equal to those of the

respective sides.

The h4X and h~Y, the distances between the straight

lines and the sides; are chosen as shown in Fig. 5,

respectively.

Moreover, the charges are horizontally slid for each
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TABLE I

COMPARISON OF THS CAPACITANCES Ca/co~ PER UNIT

LENGTH FOR THE ZERO-OFFSET STRUCTURES WITH

SAPPHIRE DIELECTRIC

I I
hx=O .0 hy=O. O

b w ~ Ca/c 0 =

T T Method B Method A

0.5 0.1 0
2.37875 2.37875

x/2 2.56979 2.56979

0 2.59301 2.59301

1“0 ‘“2 n/2 2.70460 2.70460

2.0 0.6
0 4.63194 4.63198

Tr/2 4.65335 4.65329

TABLE II

COMPARISON OF THE CAPACITANCES Ca/eO~ PER UNIT

LENGTH FOR THE OFFSET STRUCTURES WITH SAPPmR8

DIELECTRIC

hx=O .0 0=0.0

iy b w Ca/E ~=

b z’ z Method C I Method A

05 0.2 3.30091 3.31655

0.6 6.66683 6.66888

0.25 1.0 :“: ;“:;:; ;“:;:;:
. .

2.0 ::: : “::;:: :“::::;

0.5
0.2 3.71425 3.78599

7.87796 7.88577

0.50 1.0 ;“;
2.86054 2.86346

5.51966 5.52019

Z. 0.2 2.53589 2.53593

0.6 4.75462 4.75539

side of rectangular outer conductor. The distances

x~ and y~ are

and

respectively. By the slide, the potential errors on

each side are averaged. Both x~ and y~ are zero when

8 is either O or 7r/2.

We have to check the accuracy of this method based on

the above locations. For the structure shown in Fig. 1, the

analysis for the cases of arbitrary angle O has not been

presented. However, the capacitances for the cases of par-

ticular angles, i.e., 0 = O and n/2, can be obtained by

bestowing the slight improvements in the conventional

methods [2], [6]. Those methods will be shown presently in

this section. Therefore, we first compare the values of

capacitances using the method based on (11) with the

analytical values for O = O and m/2.
The comparison of the capacitances of the rectangular

coaxial lines is shown in Tables I and II. In Table I, the

numerical results of Ca/~O~ of symmetrical lines by

the method of this paper (method A) are compared with

those calculated by authors using the conformal mapping

method (method B) as

K’(k)
Ca = 4co~ —

K(k)

389

(12)

where

k =sn{~K(k,), k,}

K’(~g) b

(

(~” (for O= O)
— .

K(%) a; a= (~ (for f3=7r/2) “

K and K’ are complete elliptic integrals of the first kind.

The formula for a = 1 is given in [2]. Also in Table II,

Ca/cO~ of the offset structure by method A is com-

pared with those calculated by the improved formula of

Tippet and Chang [6] (method C). We calculated the

capacitances of method C by improving the coefficient as

ab~ (xhyv
cosh — – cosh —

Al=
a a

–1
ab~

Sinh —
a

{

~~” (for O = O)

a= ~ (for 6 = ~/2) (13)

and by substituting the coefficient for (24) in [6].

Comparing methods A and B, the capacitances of method

A for the symmetrical structure obviously have a good

accuracy. For the offset structure, the results of method A

yield a small difference when compared to method C.

Therefore, the capacitances calculated by the method of

this paper seem to have satisfactory accuracy for the arbi-

trary angle 8. The capacitances Ca/cO~ per unit length

versus the normalized width of the strip w/a for b/a = 1

are shown in Fig. 6. Plotted in Fig. 6 are design curves for

zero offset and an offset ratio hy /b of 0,5. Both curves are

shown with the parameters 6 of O, T/4, and 7r/2, respec-

tively. In Fig. 6, the values of capacitances for w/a> 0.8

obtained by method A have an error. The arrangement of

charges which was used to obtain the results of Fig. 6 is

shown in Fig. 5. Also, the capacitance error based on the

arrangement of charges shown in Fig. 5 gradually increases

as the hy increases from O to b. This fact indicates that the

arrangement of charges shown in Fig. 5 is not all-powerful.

Therefore, for w/a >0.8 and hy + b, the arrangement of

charges must be changed. Moreover, we have to check over

again whether the new arrangement of charges is correct or

not. It is a disadvantage of this method, but the usefulness

of this method s~fficiently compensates for this weakness.

The usefulness wdl be especially shown for the structures

with arbitrary angles O where the analytical solutions for

the capacitance cannot be obtained. The practice is pre-

sented on the curves of both hy /b = O and 0.5 with d = r/4

in Fig. 6 and the curves in Fig. 7. Fig. 7 shows Ca /t ~fi

versus /3 for the structures with zero-offset strip. The slopes

of the capacitances with O increase as b/a decreases.
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7-
6-

5-

4-

3-

(2%)hx=O.O ,,

bla-1.O

8

7

6 ~.—-T-

OFFSET

( by/b= 0.5)

ZERO-OFFSET -
( by/b =0.0)

f
— Method A

1+ 4

0.00.1 0.2 0.3 0.40S 0.60.7 0.00.9 tO

w/a

Fig. 6. Capacitances Ca/cofi per unit length versus w/a for the

rectangular coaxiaf lines with sapphire dielectric.

hy/b=O.O , W/a = 0.2

4.0

Ca

comL

3.5 “ b/a =0.5

3.0-

b/a =1.0

2.5
b/a=2.O

2.0 ~
o —e Tr/2

Fig. 7. Capacitances Ca/co~ per unit length versus O for the

rectangular coaxial lines with sapphire dielectric.

Another considerable method to improve the accuracy of

the capacitance is to augment the number of charges by

comparison with one used in this paper. By the augmenta-

tion, the capacitance error is generally decreased, because
the capacitance value theoretically approaches the true

value if we use the arrangement of the discrete charges

which has much the same effect as the true distribution of

charge density on the outer conductor. However, we shall

have to use great numbers of charges for the purpose.

A merit of the method of this paper is that it can be

applied to the structures with arbitrary outer conductors.

As an example, we present the application to the structure

with a circular outer conductor as shown in Fig. 8. Table

III shows the comparison of the capacitance CO/cO for the

structure with zero-offset strip having the medium of c1 /cll

=1. The capacitances of method D in Table III are given

m I x
x I x

x

x

x

x

x -x
x

x

x

,x

~— 2d —----_’

oCONTOUR POINTS X LINE CHARGES

hq= 0.5d

Fig. 8. Cross section of a coaxial line with circulm outer conductor
having an anisotropic medium and the arrangement of line charges and

contour points (n = 36).

Ca

Eo~l
4.5

w

W{d = 0.5

2.5
i

w/d = 0.2
I

2.0L_---_l
o —--e 11/2

Fig. 9. Capacitances Ca/c ~~ per unit length versus O for the

structure shown in Fig. 8 with sapphire dielectric.

TABLE III
COMPARISON OF mm CAPACITANCES Co/c ~ PER UNIT LENGTH FOR
mm STRUCTURES WITH A CIRCULAR OUTSR CONDUCTOR SHOWN

IN FIG. 8

t al= EL= 1.0 1

0.2 2.72899 I 2.72899 I
0.5 4.55873 4.55873

by a conformal mapping technique [2] as

K’(k)
co= 460—

k= l–(w/d)2

K(k) l+(w/d)2”

Table III shows very good agreement. Fig. 9 shows

Ca/co~ versus O for the structures with zero-offset

strip.
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V. CONCLUSION

We have analytically presented the electric potential

function in the anisotropic region. The potential function

was applied to the charge simulation method. The numeri-

cal results of capacitances for two structures with sapphire

dielectrics are also presented. This method is useful for the

numerical analysis of the coaxial lines where the analytical

formulas for the capacitance cannot be obtained.

The potential function (6) is applicable to the equivalent

source method [25], but it is not described in this paper.
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