IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 5, MAY 1983

385

A Numerical Calculation of the Capacitance
for the Rectangular Coaxial Line with Offset
Inner Conductor Having an Anisotropic
Dielectric

HISASHI SHIBATA, SHINYA MINAKAWA, aND RYUITI TERAKADO

Abstract —The capacitances of the rectangular coaxial lines with an
offset zero-thickness inner conductor having a sapphire dielectric are
presented by using an expanded charge simulation method. In order to
apply the method to an anisotropic region, we propose an electric potential
formula for a two-dimensional system consisting of a line charge and an
infinite plate conductor which are arbitrarily situated in the region. The
potential formula is analytically derived by means of an affine transforma-
tion, a conformal mapping technique, and the method of images. The
capacitance calculated using this method is in good agreement with those of
other available methods.

I. INTRODUCTION

HE RECTANGULAR coaxial line has been used

in microwave circuits and EMI measurement systems
[1}. The analysis of the structures with a zero-offset
inner conductor has been presented by Magnus and
Oberhettinger [2], Anderson [3], and Cohn [4]. Magnus and
Oberhettinger have also given in [2] the characteristic im-
pedance of the stripline with a circular outer conductor.
Chen [5] has obtained the capacitances of the rectangular
structures for the horizontally and vertically offset inner
conductor of finite thickness. Tippet and Chang [6] have
presented an interesting formula for the capacitance of the
structure with an offset zero-thickness strip by using a
singular-integral-equation technique. Riblet [7] has pre-
sented the even- and odd-mode characteristic impedances
of the rectangular coaxial structure with off-centered strips
by the Schwartz—Cristoffel transformation method. How-
ever, the medium between the outer and inner conductors
in the above literatures was composed of isotropic dielec-
tric.

The two-dimensional space between the two conductors
of the rectangular coaxial line, which is discussed in this
paper, is filled with an anisotropic medium. The cross
section of the structure is shown in Fig. 1. The zero-thick-
ness inner conductor is arbitrarily situated. The structure
with the anisotropic medium can be transformed to one
with a corresponding isotropic medium by means of a
transform method [8]-[10] or the method by normalized
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Fig. 1. Cross section of the rectangular coaxial line with offset inner
conductor having an anisotropic medium. (Point O’ is the center of the
rectangular.)

metric factor [11]. By applying the transformation, which
has been reported by Kusase and Terakado [10] and was
used in [12] and [13] by Shibata et al., however, the shapes
of outer conductors in Fig. 1 are generally converted into
parallelograms. Therefore, the formulas in the literature
[2]-[7] cannot be applied to the analysis of the structure
shown in Fig. 1, except for the extreme cases, i.e., § =0
and 7/2, and a numerical method is needed. The parame-
ter 6 is the angle between the principal axes of the aniso-
tropic medium and the x - y coordinates. There are various
numerical methods [14] which are applicable to the iso-
tropic region. However, it is advantageous if the method
can be directly applicable to the anisotropic region [15],
[16]. To obtain the capacitances accurately, however, these
methods are not always convenient, because the distributed
charges on the strip shown in Fig. 1 must be computed
with the potential values at a large number of grid points
of the neighborhood of the strip.

In the present work, a charge simulation method [17],
[18] is used to obtain the capacitance of the structure
shown in Fig. 1. This method has a high accuracy if we use
a good arrangement of the discrete charges, even though a
small number of charges are used. To apply the method to
the anisotropic region, we present the electrostatic field
generated by a line charge and an infinite plate conductor
which are located at any position in the region. An affine
transformation, a conformal mapping technique, and the
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method of images are used to obtain the potential function.
We also present exact distributions of equipotentials and
lines of electric flux in the region by using the function.
Application to the charge simulation method of the poten-
tial function, which already satisfied the boundary condi-
tion on the strip conductor, yields the decrease in the
number of charges by comparison with the conventional
method [17]. This consideration has been reported for an
isotropic region by Murashima [19]. The values of capaci-
tances for both § =0 and 6 = 7/2 of the structures with
offset and zero-offset strips shown in Fig. 1 are compared
with those calculated by authors using other available
methods [2], [6]. And so the capacitance obtained by the
method of this paper will be shown to have a satisfactory
accuracy.

The merit of this method is that it can be applied to the
striplines using the anisotropic medium with the outer
conductors of arbitrary shape. The application is exem-
plified with a circular outer conductor.

II. POTENTIAL FUNCTION IN ANISOTROPIC REGION

Now consider the two-dimensional region which is filled
with the anisotropic medium of the following permittivity
tensor:

) €,cos’0 +e, sin®f (e, —e, )sinfcosd
é(x, )

=¢
1 (¢, —€, )sinfcos@ €, cos*d +¢,sin* 0
(1)

for the x- y coordinates as shown in Fig. 2(a). Where ¢,
€,, and ¢, are the principal axes-relative dielectric con-
stants of the anisotropic medium and the permittivity of
vacuum, respectively. We derive a potential function
¢(x, y) at any point in the region including a plate con-
ductor with width 2w, and a line charge with magnitude A
per unit length. The function is a solution of Poisson’s
equation

v{&(x, y) vo(x, y)} == Al(xo, ») )

which satisfies the boundary condition on the plate con-
ductor, i.e., ¢ = ¢, ( = const). First, in order to obtain the
solution of (2) for the system shown in Fig. 2(a), we
transform the anisotropic region (Z-plane) in Fig. 2(a),
with the exception of the point of charge, into a corre-
sponding isotropic region (W-plane) as shown in Fig. 2(b)
by the following affine transformation [10], [12]:

HENEIH

a =
sin? @ + (e, /€, )cos* 8

(3)
where

(e, /¢, —1)sinfcosd
sin 8 + (e, /¢, )cos?8

By applying (3), the permittivity of the isotropic region
becomes €, /e,e, . But the width of plate conductor is
invariant. Secondly, we transform the region in Fig. 2(b)
into the region (7-plane) shown in Fig. 2(c) by the follow-
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Fig. 2. Transformations to the isotropic regions from an anisotropic
region and application of the method of images. (a) — (b): The affine
transformation based on (3). (b) = (¢): Conformal mapping based on

).

ing conformal mapping function [20]:

2 T

By this mapping, the region exterior to the plate is trans-
formed into that exterior to the circle with radius w. Thus,
the method of images is used to obtain the solution to the
electrostatic problem involving a circular boundary. The
position of the image of a line charge inside the circular
conductor is a point A on a straight line which connects the
point (7, s¢) to the origin O in the T-plane. The distance
OA is w?/R,,. The magnitude of the image charge is — A.
Then, the potential ¢(7, s) at point P outside the circle is
given by a line charge of magnitude A at a point (7, s,)
and the image charge of magnitude — A at a point 4 as
A R,R
o(r,s)=¢, + In WOR12 (5)

277(0‘/6"6_‘_

where R, and R, are the distances shown in Fig. 2(c).
Finally, we obtain the potential function ¢(x, y) at any
point P in the Z-plane by substituting (3) and (4) in (5).
That is '

1 w? . .
W=_|T+— W=u+iv T=r+is. (4)

A
,V)=¢,+ —————=In F(x, y; x4, 6
4>(x J’) 5N dmegfere, n (x Vs Xo J’o) ( )

where
F(x, y; Xo, %)
_ {f1(x, y)—cofi(xo, )’0)>2+<f2(x, y)—cofa (X0, J’O)}Z
o[ {1103, )= Fi(xo00 30)) + (a5 9) = o (x0, 30))']
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+
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Equation (6) gives the potential in the region exterior to the
plate conductor. Of course, the potential on the conductor
is ¢,. The electric field at any point in the Z-plane is
derivable as the negative gradient of the potential (6).
Equation (6) is also applicable to an isotropic region if we
take e, /¢, =1,ie., a=1, §=0.

In Fig. 3, we show the distributions of equipotentials
and lines of electric flux in the region of Fig. 2(a) by using
(6). Fig. 3(a) and (b) shows the field distributions with the
parameters of €, /¢, =1/9, 8§ = /6 (anisotropic), and €, /
¢, =1 (isotropic), respectively. To compare, the line charge
and the plate conductor are placed on the same positions
for both regions, respectively. Considerable differences of
the properties of electric fields for the two regions are
clearly presented in these figures. The curves in the Z-plane
correspond to the following circle groups:

{r— w?ry(c—=1) }2

2_ p2
cw” — Ry

_ {wma—w) }

cew?— R}

_ wisy(ez 1) }

cw? — R

for equipotential lines

™M

dmeqfee, (¢~ ) }
A

c=exp{

2

roc(R%) + wz)—so(R%, - wz)
r—
2¢R3
{ soc(R(z)+w2)+r0(R%—w2) }2
+{s—
2¢R3

=<(R3—w2)m }

2¢R,

¢ = tany for lines of electric flux
in the T-plane. Plotted in Fig. 3(a) and (b) are the curves
for the parameters with 47ey/e.e, (¢ —dy)/A=0.Tm (m
=0,1,---,15Yand y=+7/2n (n=1,2,---,5).

®

Fig. 3. Equipotentials and lines of electric flux (w=1, x4 =0, y,=2).
(a) Anisotropic region (¢, /¢, =1/9, 8 =x/6). (b) Isotropic region
(e, /¢ =1). v Equipotential lines. —— Lines of electric flux.

If we need the potential function at any point for a
conducting plate of width 2w charged with charge density
A per unit length, it can be readily obtained by using the
function g(x, y) in (6) as

A
,¥) =y + ———Ing(x, y). 8
o) =ttt tng(n)). @)

Equation (8) corresponds to the electric fields by an in-
finite line charge A on the origin in the 7-plane. The



388

Fig. 4. Field distribution in anisotropic region (¢, /¢, =1/9, § = 7/6)
by a conducting plate. Equipotential lines. —— Lines of
electric flux.

distributions of electric fields based on (8) are shown in
Fig. 4 with parameters ¢, /e, =1/9 and 6 =n/6. The
formula for the case of a=1, 8 = 0 is given in [21].

III. APPLICATION TO CHARGE SIMULATION

METHOD

In this section, we show that the potential function (6)
can be applied to a charge simulation method [17], [18]. In
the method, the distributed surface charges on the outer
conductor are replaced by discrete fictitious line charges at
infinity. Those charges are arranged outside of the conduc-
tor, as shown in Fig, 5. '

Now we assume that the number of pairs of line charges
and plate conductors is #. To determine the magnitude of
these charges, n contour points are chosen on the outer
conductor. By applying the superposition of the potential
function (6) at every contour point, the system of n lincar
-equations for n line charges is obtained as

A Pe1

. \:

1 , ’ ’
——|InF Xis Yis Xis Vi A +n = (i)ci
47760\/;(? [ ( Y j yj)] 'J [¢0] ‘
An ¢Cnl

(9)
where ¢c; (i=1,---,n) are the potential values on the
contour points. The pairs (x;, ;) and (x;, y;) are the
coordinates of contour and of charge points, respectively.
By solving the system of (9) under the boundary condi-
tion on the outer conductor, ¢c;=¢c, (=const), the
magnitudes of those charges [A;] are determined. So, the
potential at a point (x, y) between the inner and outer
conductors can be calculated analytically by superposition.
That is

1 n
¢(x,y)=n¢0+ Z AjlllF(xay;xjayj)'

TeoyCu€yL j=1
(10)
By using (10), we can check whether the calculated charges
are correct or not. The judgment is performed by compar-

ing the potential at a number of check points located on
the outer conductor with the given boundary potential. Of
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Fig; 5. Arrangement of line charges and contour points for the calcula-
tion of the field potential between outer and inner conductors by charge
simulation method. )

course the difference between those potehtials must be
lessened. The capacitance Ca per unit length is obtained as
follows:

1 °
_.__Z;\j

Ca=
n¢0_¢00 j=1

. (11)
The accuracy of (11) depends not only on the placement
and the number of charges but also on the method of the
system of equations in (9). For these problems, Murashima
et al. [22], [23] discussed the properties of the potential
error and the location as well as shape of the boundary. No
discussion was presented, however, for a rectangular
boundary.

The capacitance error of the structure shown in Fig. 1
calculated using (11) will be discussed in the following
section. '

IV. NUMERICAL EVALUATION OF CAPACITANCE

We calculate in this section the capacitances of the
structure shown in Fig. 1 with a sapphire dielectric (¢, =
11.6, €, = 9.4) [24] by using the method presented in the
previous section. The arrangement of the line charges and
the contour points are shown in Fig. 5. In Fig. 5, we select
the locations for the line charges and the contour points as
follows.

a) The number of line charges » is chosen to be 36.

b) The contour points are equally placed on each side
of rectangular. '

¢) The line charges are equally arranged on the straight
lines which parallel the sides of the rectangular. The
lengths of the straight lines equal to those of the
respective sides. o

d) The A, and A, the distances between the straight
lines and the sides, are chosen as shown in Fig. 5,
respectively.

e) Moreover, the charges are horizontally slid for each
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TABLEI
COMPARISON OF THE CAPACITANCES Ca /€y/e,€ . PER UNIT
LENGTH FOR THE ZERO-OFFSET STRUCTURES WITH
SAPPHIRE DIELECTRIC

hx=0.0  hy=0.0

E w 6 Ca/Egven €L

a a Method B Method A
o | 2.37875 | 2.37875

0.500.11 15 | 2.56979 | 2.56979
o | 2.50301 | 2.50301

001020 1t 2.70460 | 2.70460
o | 4.63194 | 4.63198

2.010-80 15 | 4.65335 | 4.65329

TABLE II

COMPARISON OF THE CAPACITANCES Ca /€gy/€,€ | PER UNIT
LENGTH FOR THE OFFSET STRUCTURES WITH SAPPHIRE

DIELECTRIC
hx=0.0 6=0.0

hy b | w Ca/€gven €
b a a Method C [Method A
0.5 | 0+2 | 3.30001 | 3.31655
| 0.6 | 6.66683 | 6.66888
0.2 | 2.64439 | 2.64458
0.2511.00 5.6 | 5.00332 | 5.00345
2.0 0-2 | 2.48804 | 2.49804
"l o0.6 | 4.64708 | 4.64665
0.5 | 0.2 | 3.71425 | 3.78599
““10.6'| 7.87796 | 7.88577
0.2 | 2.86054 | 2.86346
0-501 1.0 5 6 | 5.51966 | 5.52019
2.0]0-2 | 2.53589 | 2.53503
““10.6 | 4.75462 | 4.75539

side of rectangular outer conductor. The distances
x, and y, are

Xq=—Bhy,
and

B
respectively. By the slide, the potential errors on

each side are averaged. Both x, and y, are zero when
8 is either 0 or #/2.

yq=_..

We have to check the accuracy of this method based on
the above locations. For the structure shown in Fig. 1, the
analysis for the cases of arbitrary angle 8 has not been
presented. However, the capacitances for the cases of par-
ticular angles, i.e., =0 and 7/2, can be obtained by
bestowing the slight improvements in the conventional
methods [2], [6]. Those methods will be shown presently in
this section. Therefore, we first compare the values of
capacitances using the method based on (11) with the
analytical values for § = 0 and #/2.

The comparison of the capacitances of the rectangular
coaxial lines is shown in Tables I and II. In Table I, the
numerical results of Ca /emfe;_e—: of symmetrical lines by
the method of this paper (method A) are compared with
those calculated by authors using the conformal mapping
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method (method B) as
K'(k
=degee K((k)) (12)

where

sn{ ZK(k,), k)
ol

K’(kg) _ _ Ve /€L (for 8 =0)
K(kg) T VeL /€ (for0=77/2).

K and K’ are complete elliptic integrals of the first kind.
The formula for a=1 is given in [2]. Also in Table II,
Ca /egfe,e, of the offset structure by method A is com-
pared with those calculated by the improved formula of
Tippet and Chang [6] (method C). We calculated the
capacitances of method C by improving the coefficient as

ah o

cosh ——Zz —cosh
A4,= -1
ot 22
a
Ve /€0 (for 8 =0)
a= (13)
Je /¢, (for8=m/2)

and by substituting the coefficient for (24) in [6].
Comparing methods A and B, the capacitances of method
A for the symmetrical structure obviously have a good
accuracy. For the offset structure, the results of method A
yield a small difference when compared to method C.
Therefore, the capacitances calculated by the method of
this paper seem to have satisfactory accuracy for the arbi-
trary angle 8. The capacitances Ca /‘0\/‘nT¢ per unit length
versus the normalized width of the strip w/a for b/a=1
are shown in Fig. 6. Plotted in Fig, 6 are design curves for
zero offset and an offset ratio 4, /b of 0.5. Both curves are
shown with the parameters 8 of 0, #/4, and 7/2, respec-
tively. In Fig. 6, the values of capacitances for w/a = 0.8
obtained by method A have an error. The arrangement of
charges which was used to obtain the results of Fig. 6 is
shown in Fig. 5. Also, the capacitance error based on the
arrangement of charges shown in Fig. 5 gradually increases
as the &, increases from 0 to . This fact indicates that the
arrangement of charges shown in Fig. 5 is not all-powerful.
Therefore, for w/a 2 0.8 and 4, — b, the arrangement of
charges must be changed. Moreover, we have to check over
again whether the new arrangement of charges is correct or
not. It is a disadvantage of this method, but the usefulness
of this method sufficiently compensates for this weakness.
The usefulness will be especially shown for the structures
with arbitrary angles 8 where the analytical solutions for
the capacitance cannot be obtained. The practice is pre-
sented on the curves of both 4, /b =0 and 0.5 with § = /4
in Fig. 6 and the curves in Flg 7. Fig. 7 shows Ca /em/e,—,ej

versus # for the structures with zero-offset strip. The slopes
of the capacitances with ¢ increase as b/a decreases.
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Fig. 7. Capacitances Ca/enfe e, per unit length versus 8 for the
rectangular coaxial lines with sapphire dielectric.

Another considerable method to improve the accuracy of
the capacitance is to augment the number of charges by
comparison with one used in this paper. By the augmenta-
tion, the capacitance error is generally decreased, because
the capacitance value theoretically approaches the true
value if we use the arrangement of the discrete charges
which has much the same effect as the true distribution of
charge density on the outer conductor. However, we shall
have to use great numbers of charges for the purpose.

A merit of the method of this paper is that it can be
applied to the structures with arbitrary outer conductors.
As an example, we present the application to the structure
with a circular outer conductor as shown in Fig. 8. Table
IIT shows the comparison of the capacitance C, /¢, for the
structure with zero-offset strip having the medium of €, /¢,
=1. The capacitances of method D in Table III are given

y

x
.S

x x
X oo ox X

24

°CONTOUR POINTS X LINE CHARGES
hq=- 0.54

Fig. 8. Cross section of a coaxial line with circular outer conductor

having an anisotropic medium and the arrangement of line charges and
contour points (n = 36).

50
Ca
EovEnEL /
4.5 r
ws/d=05
4.0 1
3.01 r

2.5

20+—T—m"T—T—T—r

[o] — @ n/2

Fig. 9. Capacitances Ca/egfe e, per unit length versus & for the
structure shown in Fig. 8 with sapphire dielectric.

TABLE IIT
COMPARISON OF THE CAPACITANCES C;, /€, PER UNIT LENGTH FOR
THE STRUCTURES WITH A CIRCULAR OUTER CONDUCTOR SHOWN

IN FiG. 8
en= €= 1.0
Co/Eo
% D:conformal A:the method of
mapping [2) this paper {n=36}
0.2 2.72899 2.72899
0.5 4.55873 4.55873

by a conformal mapping technique [2] as
K(k) , _ 1-(w/d)’
K(k) 1+(w/d)*

Table III shows very good agreement. Fig. 9 shows
Ca/ey/e€, versus @ for the structures with zero-offset

strip.

G, =4e,
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V. CONCLUSION

We have analytically presented the electric potential
function in the anisotropic region. The potential function
was applied to the charge simulation method. The numeri-
cal results of capacitances for two structures with sapphire
dielectrics are also presented. This method is useful for the
numerical analysis of the coaxial lines where the analytical
formulas for the capacitance cannot be obtained.

The potential function (6) is applicable to the equivalent
source method [25]; but it is not described in this paper.
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